有一个c=10pf的电容器,引脚的分布电感为l=2nh.请问当频率f在什么范围时,电容器开
电容的作用 作为无源元件之一的电容,其作用不外乎以下几种: 1、应用于电源电路,实现旁路、去藕、滤波和储能的作用。下面分类详述之: 1.旁路 旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。 就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。 为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。 这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。 2.去藕 去藕,又称解藕。 从电路来说, 总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大, 驱动电路要把电容充电、放电, 才能完成信号的跳变,在上升沿比较陡峭的时候, 电流比较大, 这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。 去藕电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。将旁路电容和去藕电容结合起来将更容易理解。旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般取0.1μf、0.01μf 等;而去耦合电容的容量一般较大,可能是10μf 或者更大,依据电路中分布参数、以及驱动电流的变化大小来确定。 旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。 3.滤波 从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1μf 的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。电容的作用就是通高阻低,通高频阻低频。电容越大低频越容易通过,电容越大高频越容易通过。具体用在滤波中,大电容(1000μf)滤低频,小电容(20pf)滤高频。 曾有网友形象地将滤波电容比作“水塘”。由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。 4.储能 储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。 电压额定值为40~450vdc、电容值在220~150 000μf 之间的铝电解电容器(如epcos 公司的 b43504 或b43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式, 对于功率级超过10kw 的电源,通常采用体积较大的罐形螺旋端子电容器。 2、应用于信号电路,主要完成耦合、振荡/同步及时间常数的作用: 1.耦合 举个例子来讲,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合, 这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容, 由于适当容量的电容器对交流信号较小的阻抗,这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。 2.振荡/同步 包括rc、lc 振荡器及晶体的负载电容都属于这一范畴。 3.时间常数 这就是常见的 r、c 串联构成的积分电路。当输入信号电压加在输入端时,电容(c)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(r)、电容(c)的特性通过下面的公式描述: i = (v / r)e - (t / cr) 话说电容之二:电容的选择 通常,应该如何为我们的电路选择一颗合适的电容呢?笔者认为,应基于以下几点考虑: 1、静电容量; 2、额定耐压; 3、容值误差; 4、直流偏压下的电容变化量; 5、噪声等级; 6、电容的类型; 7、电容的规格。 那么,是否有捷径可寻呢?其实,电容作为器件的外围元件,几乎每个器件的 datasheet 或者 solutions,都比较明确地指明了外围元件的选择参数,也就是说,据此可以获得基本的器件选择要求,然后再进一步完善细化之。其实选用电容时不仅仅是只看容量和封装,具体要看产品所使用环境,特殊的电路必须用特殊的电容。 下面是 chip capacitor 根据电介质的介电常数分类, 介电常数直接影响电路的稳定性。 ?np0 or ch (k < 150): 电气性能最稳定,基本上不随温度﹑电压与时间的改变而改变,适用于对稳定性要求高的高频电路。鉴于k 值较小,所以在0402、0603、0805 封装下很难有大容量的电容。如 0603 一般最大的 10nf以下。 ?x7r or yb (2000 < k < 4000): 电气性能较稳定,在温度﹑电压与时间改变时性能的变化并不显著(δc < ±10%)。适用于隔直、偶合、旁路与对容量稳定性要求不太高的全频鉴电路。 ?y5v or yf(k > 15000): 容量稳定性较 x7r 差(δc < +20% ~ -80%),容量﹑损耗对温度、电压等测试条件较敏感,但由于其k 值较大,所以适用于一些容值要求较高的场合。 话说电容之三:电容的分类 电容的分类方式及种类很多,基于电容的材料特性,其可分为以下几大类: 1.铝电解电容 电容容量范围为0.1μf ~ 22000μf,高脉动电流、长寿命、大容量的不二之选,广泛应用于电源滤波、解藕等场合。 2.薄膜电容 电容容量范围为0.1pf ~ 10μf,具有较小公差、较高容量稳定性及极低的压电效应,因此是x、y 安全电容、emi/emc 的首选。 3.钽电容 电容容量范围为2.2μf ~ 560μf,低等效串联电阻(esr)、低等效串联电感(esl)。脉动吸收、瞬态响应及噪声抑制都优于铝电解电容,是高稳定电源的理想选择。 ? 陶瓷电容 电容容量范围为0.5pf ~ 100μf,独特的材料和薄膜技术的结晶,迎合了当今“更轻、更薄、更节能”的设计理念。 ? 超级电容 电容容量范围为0.022f ~ 70f,极高的容值,因此又称做“金电容”或者“法拉电容”。主要特点是:超高容值、良好的充/放电特性,适合于电能存储和电源备份。缺点是耐压较低,工作温度范围较窄。 话说电容之四:多层陶瓷电容(mlcc) 对于电容而言,小型化和高容量是永恒不变的发展趋势。其中,要数多层陶瓷电容(mlcc)的发展最快。 多层陶瓷电容在便携产品中广泛应用极为广泛,但近年来数字产品的技术进步对其提出了新要求。例如,手机要求更高的传输速率和更高的性能;基带处理器要求高速度、低电压;lcd 模块要求低厚度(0.5mm)、大容量电容。 而汽车环境的苛刻性对多层陶瓷电容更有特殊的要求:首先是耐高温,放置于其中的多层陶瓷电容必须能满足150℃ 的工作温度;其次是在电池电路上需要短路失效保护设计。 也就是说,小型化、高速度和高性能、耐高温条件、高可靠性已成为陶瓷电容的关键特性。 陶瓷电容的容量随直流偏置电压的变化而变化。直流偏置电压降低了介电常数, 因此需要从材料方面,降低介电常数对电压的依赖,优化直流偏置电压特性。 应用中较为常见的是 x7r(x5r)类多层陶瓷电容, 它的容量主要集中在1000pf 以上,该类电容器主要性能指标是等效串联电阻(esr),在高波纹电流的电源去耦、滤波及低频信号耦合电路的低功耗表现比较突出。另一类多层陶瓷电容是 c0g 类,它的容量多在 1000pf 以下, 该类电容器主要性能指标是损耗角正切值 tgδ(df)。传统的贵金属电极(nme)的 c0**品 df 值范围是 (2.0 ~ 8.0) × 10-4,而技术创新型贱金属电极(bme)的c0g 产品 df 值范围为 (1.0 ~ 2.5) × 10-4, 约是前者的 31 ~ 50%。 该类产品在载有 t/r 模块电路的 gsm、cdma、无绳电话、蓝牙、gps 系统中低功耗特性较为显著。较多用于各种高频电路,如振荡/同步器、定时器电路等。话说电容之五:钽电容替代电解电容的误区 通常的看法是钽电容性能比铝电容好,因为钽电容的介质为阳极氧化后生成的五氧化二钽,它的介电能力(通常用ε 表示)比铝电容的三氧化二铝介质要高。因此在同样容量的情况下,钽电容的体积能比铝电容做得更小。(电解电容的电容量取决于介质的介电能力和体积,在容量一定的情况下,介电能力越高,体积就可以做得越小,反之,体积就需要做得越大)再加上钽的性质比较稳定,所以通常认为钽电容性能比铝电容好。 但这种凭阳极判断电容性能的方法已经过时了,目前决定电解电容性能的关键并不在于阳极,而在于电解质,也就是阴极。因为不同的阴极和不同的阳极可以组合成不同种类的电解电容,其性能也大不相同。采用同一种阳极的电容由于电解质的不同,性能可以差距很大,总之阳极对于电容性能的影响远远小于阴极。还有一种看法是认为钽电容比铝电容性能好,主要是由于钽加上二氧化锰阴极助威后才有明显好于铝电解液电容的表现。如果把铝电解液电容的阴极更换为二氧化锰, 那么它的性能其实也能提升不少。 可以肯定,esr 是衡量一个电容特性的主要参数之一。 但是,选择电容,应避免 esr 越低越好,品质越高越好等误区。衡量一个产品,一定要全方位、多角度的去考虑,切不可把电容的作用有意无意的夸大。 ---以上引用了部分网友的经验总结。 普通电解电容的结构是阳极和阴极和电解质,阳极是钝化铝,阴极是纯铝,所以关键是在阳极和电解质。阳极的好坏关系着耐压电介系数等问题。一般来说,钽电解电容的esr 要比同等容量同等耐压的铝电解电容小很多,高频性能更好。如果那个电容是用在滤波器电路(比如中心为50hz 的带通滤波器)的话,要注意容量变化后对滤波器性能(通带…)的影响。 话说电容之六:旁路电容的应用问题 嵌入式设计中,要求 mcu 从耗电量很大的处理密集型工作模式进入耗电量很少的空闲/休眠模式。这些转换很容易引起线路损耗的急剧增加,增加的速率很高,达到 20a/ms 甚至更快。 通常采用旁路电容来解决稳压器无法适应系统中高速器件引起的负载变化,以确保电源输出的稳定性及良好的瞬态响应。旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。应该明白,大容量和小容量的旁路电容都可能是必需的,有的甚至是多个陶瓷电容和钽电容。这样的组合能够解决上述负载电流或许为阶梯变化所带来的问题,而且还能提供足够的去耦以抑制电压和电流毛刺。在负载变化非常剧烈的情况下,则需要三个或更多不同容量的电容,以保证在稳压器稳压前提供足够的电流。快速的瞬态过程由高频小容量电容来抑制,中速的瞬态过程由低频大容量来抑制,剩下则交给稳压器完成了。 还应记住一点,稳压器也要求电容尽量靠近电压输出端。 话说电容之七:电容的等效串联电阻esr 普遍的观点是:一个等效串联电阻(esr)很小的相对较大容量的外部电容能很好地吸收快速转换时的峰值(纹波)电流。但是,有时这样的选择容易引起稳压器(特别是线性稳压器 ldo)的不稳定,所以必须合理选择小容量和大容量电容的容值。永远记住,稳压器就是一个放大器,放大器可能出现的各种情况它都会出现。 由于 dc/dc 转换器的响应速度相对较慢,输出去耦电容在负载阶跃的初始阶段起主导的作用,因此需要额外大容量的电容来减缓相对于 dc/dc 转换器的快速转换,同时用高频电容减缓相对于大电容的快速变换。通常,大容量电容的等效串联电阻应该选择为合适的值,以便使输出电压的峰值和毛刺在器件的dasheet 规定之内。 高频转换中,小容量电容在 0.01μf 到0.1μf 量级就能很好满足要求。表贴陶瓷电容或者多层陶瓷电容(mlcc)具有更小的 esr。另外,在这些容值下,它们的体积和 bom 成本都比较合理。如果局部低频去耦不充分,则从低频向高频转换时将引起输入电压降低。电压下降过程可能持续数毫秒,时间长短主要取决于稳压器调节增益和提供较大负载电流的时间。 用 esr 大的电容并联比用 esr 恰好那么低的单个电容当然更具成本效益。然而,这需要你在 edapcb/pcbj**hu/“ target=”_blank“ class=”**textkey“>pcb 面积、器件数目与成本之间寻求折衷。 话说电容之八:电解电容的电参数 这里的电解电容器主要指铝电解电容器,其基本的电参数包括下列五点: 1.电容值 电解电容器的容值,取决于在交流电压下工作时所呈现的阻抗。因此容值,也就是交流电容值,随着工作频率、电压以及测量方法的变化而变化。在标准j**c 5102 规定:铝电解电容的电容量的测量条件是在频率为 120hz,最大交流电压为 0.5vrms,dc bias 电压为1.5 ~ 2.0v 的条件下进行。可以断言,铝电解电容器的容量随频率的增加而减小。 2.损耗角正切值 tan δ 在电容器的等效电路中,串联等效电阻 esr 同容抗 1/ωc 之比称之为 tan δ, 这里的 esr 是在 120hz 下计算获得的值。显然,tan δ 随着测量频率的增加而变大,随测量温度的下降而增大。 3.阻抗 z 在特定的频率下,阻碍交流电流通过的电阻即为所谓的阻抗(z)。它与电容等效电路中的电容值、电感值密切相关,且与 esr 也有关系。 z = √ [esr2 + (xl - xc)2 ] 式中,xc = 1 / ωc = 1 / 2πfc xl = ωl = 2πfl 电容的容抗(xc)在低频率范围内随着频率的增加逐步减小,频率继续增加达到中频范围时电抗(xl)降至 esr 的值。当频率达到高频范围时感抗(xl)变为主导,所以阻抗是随着频率的增加而增加。 4.漏电流 电容器的介质对直流电流具有很大的阻碍作用。然而,由于铝氧化膜介质上浸有电解液,在施加电压时,重新形成的以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流。通常,漏电流会随着温度和电压的升高而增大。 5.纹波电流和纹波电压 在一些资料中将此二者称做”涟波电流“和”涟波电压“,其实就是 ripplecurrent,ripple voltage。 含义即为电容器所能耐受纹波电流/电压值。 它们和esr 之间的关系密切,可以用下面的式子表示: urms = irms × r 式中,vrms 表示纹波电压 irms 表示纹波电流 r 表示电容的 esr 由上可见,当纹波电流增大的时候,即使在 esr 保持不变的情况下,涟波电压也会成倍提高。换言之,当纹波电压增大时,纹波电流也随之增大,这也是要求电容具备更低 esr 值的原因。叠加入纹波电流后,由于电容内部的等效串连电阻(esr)引起发热,从而影响到电容器的使用寿命。一般的,纹波电流与频率成正比,因此低频时纹波电流也比较低。 话说电容之九:电容器参数的基本公式 1.容量(法拉) 英制: c = ( 0.224 × k ? a) / td 公制: c = ( 0.0884 × k ? a) / td 2.电容器中存储的能量 e = ? cv2 3.电容器的线性充电量 i = c (dv/dt) 4.电容的总阻抗(欧姆) z = √ [ rs2 + (xc – xl)2 ] 5.容性电抗(欧姆) xc = 1/(2πfc) 6.相位角 ф 理想电容器:超前当前电压 90? 理想电感器:滞后当前电压 90? 理想电阻器:与当前电压的相位相同 7.耗散系数 (%) d.f. = tan δ (损耗角) = esr / xc = (2πfc)(esr) 8.品质因素 q = cotan δ = 1/ df 9.等效串联电阻esr(欧姆) esr = (df) xc = df/ 2πfc 10.功率消耗 power loss = (2πfcv2) (df) 11.功率因数 pf = sin δ (loss angle) – cos ф (相位角) 12.均方根 rms = 0.707 × vp 13.千伏安kva (千瓦) kva = 2πfcv2 × 10-3 14.电容器的温度系数 t.c. = [ (ct – c25) / c25 (tt – 25) ] × 106 15.容量损耗(%) cd = [ (c1 – c2) / c1 ] × 100 16.陶瓷电容的可靠性 l0 / lt = (vt / v0) x (tt / t0)y 17.串联时的容值 n 个电容串联:1/ct = 1/c1 + 1/c2 + … + 1/cn 两个电容串联:ct = c1 ? c2 / (c1 + c2) 18.并联时的容值 ct = c1 + c2 + … + cn 19.重复次数(againg rate) a.r. = % δc / decade of time 上述公式中的符号说明如下: k = 介电常数 a = 面积 td = 绝缘层厚度 v = 电压 t = 时间 rs = 串联电阻 f = 频率 l = 电感感性系数 δ = 损耗角 ф = 相位角 l0 = 使用寿命 lt = 试验寿命 vt = 测试电压 v0 = 工作电压 tt = 测试温度 t0 = 工作温度 x , y = 电压与温度的效应指数。 话说电容之十:电源输入端的x,y 安全电容 在交流电源输入端,一般需要增加三个电容来抑制emi 传导干扰。 交流电源的输入一般可分为三根线:火线(l)/零线(n)/地线(g)。在火线和地线之间及在零线和地线之间并接的电容,一般称之为y 电容。这两个y电容连接的位置比较关键,必须需要符合相关安全标准,以防引起电子设备漏电或机壳带电,容易危及人身安全及生命,所以它们都属于安全电容,要求电容值不能偏大,而耐压必须较高。一般地,工作在亚热带的机器,要求对地漏电电流不能超过0.7ma;工作在温带机器,要求对地漏电电流不能超过0.35ma。因此,y 电容的总容量一般都不能超过4700pf。 根据iec 60384-14,电容器分为x电容及y电容, 1. x电容是指跨于l-n之间的电容器, 2. y电容是指跨于l-g/n-g之间的电容器。 (l=line, n=neutral, g=ground) x电容底下又分为x1, x2, x3,主要差别在于: 1. x1耐高压大于2.5 kv, 小于等于4 kv, 2. x2耐高压小于等于2.5 kv, 3. x3耐高压小于等于1.2 kv y电容底下又分为y1, y2, y3,y4, 主要差别在于: 1. y1耐高压大于8 kv, 2. y2耐高压大于5 kv, 3. y3耐高压 n/a 4. y4耐高压大于2.5 kv x,y电容都是安规电容,火线零线间的是x电容,火线与地间的是y电容。 它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模工扰起滤波作用。 安规电容是指用于这样的场合,即电容器失效后,不会导致**,不危及人身安全。 安规电容安全等级 应用中允许的峰值脉冲电压 过电压等级(iec664) x1 >2.5kv ≤4.0kv ⅲ x2 ≤2.5kv ⅱ x3 ≤1.2kv —— 安规电容安全等级 绝缘类型 额定电压范围 y1 双重绝缘或加强绝缘 ≥ 250v y2 基本绝缘或附加绝缘 ≥150v ≤250v y3 基本绝缘或附加绝缘 ≥150v ≤250v y4 基本绝缘或附加绝缘 <150v y电容的电容量必须受到限制,从而达到控制在额定频率及额定电压作用下,流过它的漏电流的大小和对系统emc性能影响的目的。g**151规定y电容的容量应不大于0.1uf。y电容除符合相应的电网电压耐压外,还要求这种电容器在电气和机械性能方面有足够的安全余量,避免在极端恶劣环境条件下出现击穿短路现象,y电容的耐压性能对保护人身安全具有重要意义 在滤波电路上有x电容,就是跨接l-n线;y电容就是n-g线。 在安规标准上有按脉冲电压分x1,x2,x3电容;按绝缘等级来分y1,y2,y3来分。 (这些都不是按什么材质来分的,以后多学习。) 至于安规标准各个**有一些差别,但额定电压无非就是250和400。 各大厂家做的安规电容就是要满足这个安规标准的需求,一个安规电容可以满足y电容的要求,也有可以做成满足x电容要求。所以就有的安规电容上标x1y1,x1y2… 火线与0线之间接个电容就是是x,而火线与地线之间接个电容像个y。 由于火线与0线直接电容,受电压峰值的影响,避免短路,比较注重的参数就是耐压等级,在电容值上没有定限制值。 火线与地线直接电容要涉及到漏电安全的问题,因此它注重的参数就是绝缘等级 20210311
类似问答
-
电容器的电阻
-
2024-11-17 13:10:51
-
提问者: 未知
不能看待。电的特性是隔直通交。对于电而言,电容器是一个断路,根通,这种情况下,也许可以看作是一个无限大阻值的电阻。但是,对交流电而言,在不同电压、电流的情况下电容器所表现的电阻是不同的,所以电容不能看作定值电阻。在实际应用中,针对不同的应用方向,电容器有很多不同的型号,有的是发挥“容”的作用;有的是发挥分离直流和交流的作用;有的是发挥滤波的作用,即是让高频的交流电通过或者让低频的交流电通过等等。
-
-
在座的大仙帮个忙呗!!独石电容器如何?
-
2024-11-17 20:52:04
-
提问者: 未知
2.论电容品质,日本的最弱,mlcc电容也不值得注意,其中tdk、村田电子等归属于顶级的品牌,还有太阳诱电等品牌,**的国巨性价比最差市场占有率非常高,不过必须留意的是...
-
为什么电容中的电场能量wc=1/2cu²c?
-
2024-11-17 22:13:40
-
提问者: 未知
我们知道能量 e=uq 而电容又有 q=cu 那么 e 应该等于 cu² 才对 那 1/2 又从哪来的呢?那是应为 电容的带电量不能由零一下子变为q ,这需要一个过程,于是 e=∫qdu = ∫cudu = 1/2cu² 也就是u-q曲线与q轴围成的面积
-
电容器给电池充电的能量守恒如何列?
-
2024-11-17 08:15:33
-
提问者: 未知
eq=ui
-
频率f=1/(2π√(lc),这个公式中 π,f,l,c的单位各是什么?
-
2024-11-17 12:56:03
-
提问者: 未知
这个公式为典型lc振荡电路辐射电磁波的频率公式 f指频率,单位为s(秒)的-1次方 l指感抗,单位为亨利 c指容抗,单位为法 π是指圆周率,为无量纲量.
-
超级电容器和电池有什么关系和区别?
-
2024-11-17 17:18:09
-
提问者: 未知
是以碳基活性物加导电碳黑与粘结剂混合作极片材料,利用极化电解质吸附电解液里的正负离子,形成双电层结构进行储能,该储能过程基本不发生化学反应,故循环寿命很长。 而电池,就为例,用填满海绵状铅的铅板作负极,填满的铅板作正极,并用1.28%的稀硫酸作电解质。在充电时,电能转化为化学能,放电时化学能又转化为电能。电池在放电时,金属铅是负极,发生氧化反应,被氧化为**;是正极,发生还原反应,被还原...
-
当变频器频率超过电机额定频率时,对电机有什么影响?
-
2024-11-17 10:56:22
-
提问者: 未知
通常的电机是按照额定频率电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速.(t=te,p)变频器输出频率大于额定频率时(如我国的电机大于50hz),电机产生的转矩要以和频率成反比的线性关系下降。当电机以大于额定频率20%速度运行时,电机...
-
电容和电感的作用是什么呢?
-
2024-11-17 03:55:14
-
提问者: 未知
它们三个在一起,可组成各种振荡电路,正反馈负反馈等电路。保护电器不被烧坏 1、电阻 是对交直流电流有一定阻挡作用的元件,在电路里起到降压、分压和交联作用。2、电容 是由两个互相绝缘的极板组成的容性元件,对直流起到绝缘作用,随着容抗的大小对交流起到不同数量的导通作用,主要用于隔...
-
电流互感器和电压互感器使用时注意事项?
-
2024-11-17 12:33:27
-
提问者: 未知
电流互感器即ct,相当于一个升压变压器,一次侧只有一到二匝,二次侧则有很多匝,所以当二次侧开路时会产生很高的高电压,不但对人身有害,甚至可能击穿绝缘。因此使用ct最重要的是绝对不可使二次侧开路!电压互感器即pt二次侧不能短路,因为短路将烧坏pt,所以二次侧要装设熔断器(俗称保险、熔丝管)。
-
钽电容器的塑料外壳是什么材料的
-
2024-11-17 02:20:23
-
提问者: 未知
钽电容器的塑料外壳是什么材料的 环氧树脂:下级物料下级物料英文名称下级物料重量(g)材料材质材料材质英文名称颜色供应商材质重量(g)scalecasec封装树脂mold resin0.078 ...