抛物线所有公式

寰空亮宇_ 2024-11-15 23:23:55
最佳回答
一般式:y=ax2+bx+c(a、b、c为常数,a≠0) 顶点式:y=a(x-h)2+k(62616964757a686964616fe59b9ee7ad9431333366303763a、h、k为常数,a≠0) 交点式(两根式):y=a(x-x1)(x-x2)(a≠0) 其中抛物线y=ax2+bx+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程ax2+bx+c=0的两实数根。抛物线四... 20210311
汇率兑换计算器

类似问答
  • 抛物线的最低点或最高点的公式是什么?
    • 2024-11-15 19:36:48
    • 提问者: 未知
    抛物线的最低点或最高点的公式是:[-b/2a,(4ac-b*b)/4a]这是开口向上向下都通用的!对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2。开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向...
  • 一元二次方程图象抛物线中轴在y轴哪一侧用什么公式看?
    • 2024-11-15 18:34:42
    • 提问者: 未知
    设方程y=ax^2+bx+c(a不等于0) 则中轴的公式是x=-b/2a(1) 这样子的话就可以知道直接a和b的符号了 如果异号(1)式大于0 那么就是在y轴右侧 如果同号(1)式小于0 那么就是在y轴左侧 如果b=0那么就是y轴~
  • 抛物线相关结论有哪些呢?
    • 2024-11-15 17:06:10
    • 提问者: 未知
    抛物线相关结论编辑a(x1,y1),b(x2,y2),a,b在抛物线y2=2px上,则有:①直线ab过焦点时,x1x2=p²/4,y1y2=-p²;(当a,b在抛物线x²=2py上时,则有x1x2=-p²,y1y2=p²/4,要在直线过焦点时才能成立...
  • 抛物线公式
    • 2024-11-15 12:03:48
    • 提问者: 未知
    抛物线标准方程
  • 开口向左向右的抛物线基本公式
    • 2024-11-15 22:16:54
    • 提问者: 未知
    抛物线的标准:y方= 2px (这个是焦点在x轴上的方程) 当p>0 向右 焦点坐标 (p/2,0) 方程x=-p/2 p<0时 开口向左 焦点坐标 (-p/2,0) 准线方程x=p/2x方= 2py(这个是焦点在y 轴上的方程)当p>0 时 开口向上 焦点坐标 (0,p/2) 准线方程y=-p/2p<0 时 开口向下 焦点坐标 (0,-p/2) 准线方程y=p/2
  • 抛物线的四种图像谁能画一下,谢谢
    • 2024-11-15 13:19:57
    • 提问者: 未知
    抛物线的四种图像如下图所示:平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。抛物线是指平面内到一个定点f...
  • 以直线x=-2为准线的抛物线的标准方程是
    • 2024-11-15 01:09:06
    • 提问者: 未知
    答案 y^2=8x p/2=-2 p=4 因为你说是标准方程了,那就说明抛物线顶点在圆点,要不准线是x=-2的抛物线就可以上下平移,有无限个了。
  • 抛物线
    • 2024-11-15 13:54:35
    • 提问者: 未知
    (1)设l1:y=k(x+1)+2,把它代入y=2x^得2x^-kx-k-2=0,由△=0得,(k+4)^=0,∴k=-4,l1的方程4x+y+2=0(2)x=a与y=2x^联立得b(a,2a^),x=a与4x+y+2=0联立得d(a,-2-4a),∴|bd|=2a^+4a...
  • 抛物线的原理
    • 2024-11-15 08:12:25
    • 提问者: 未知
    没有任何原理 只有一个表达式 ax2+bx+c=0(a不等于0) 物理中的抛物线是运动轨迹,不过物理中的抛物线不是这么简单的,一般电子在偏转电场中的运动和抛体运动的轨迹都是抛物线
  • 股票抛物线 怎么看
    • 2024-11-15 19:00:31
    • 提问者: 未知
    k线图以交易时间为横坐标,价格为纵坐标将每日的k线连续绘出即成k线图。k线图中的柱体有阳线和阴线之分。一般用红色柱体表示阳线,绿色柱体表示阴线。如果柱体表示的时间段内的收盘价高于开盘价...
汇率兑换计算器

热门推荐
热门问答
最新问答
推荐问答
新手帮助
常见问题
房贷计算器-九子财经 | 备案号: 桂ICP备19010581号-1 商务联系 企鹅:2790-680461

特别声明:本网为公益网站,人人都可发布,所有内容为会员自行上传发布",本站不承担任何法律责任,如内容有该作者著作权或违规内容,请联系我们清空删除。