会飞的茄子 ?乐山孃孃
2024-11-17 16:29:31
最佳回答
分多不要浪费!积分一般分为不定积分、定积分和微积分三种1.0不定积分设f(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数f(x)+c(c为任意常数)叫做函数f(x)的不定积分.记作∫f(x)dx.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,c叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数c,就得到函数f(x)的不定积分.也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数.2.0定积分众所周知,微积分的两大部分是微分与积分.微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数.所以,微分与积分互为逆运算.实际上,积分还可以分为两部分.第一种,是单纯的积分,也就是已知导数求原函数,而若f(x)的导数是f(x),那么f(x)+c(c是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到f(x),因为f(x)+c的导数也是f(x),c是无穷无尽的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用f(x)+c代替,这就称为不定积分.而相对于不定积分,就是定积分.所谓定积分,其形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面).之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数.定积分的正式名称是黎曼积分,详见黎曼积分.用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积.实际上,定积分的上下限就是区间的两个端点a、b.我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数.它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢?定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系.把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分.这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:若f'(x)=f(x)那么∫f(x) dx (上限a下限b)=f(a)-f(b)牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差.正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理.3.0微积分积分是微分的逆运算,即知道了函数的导函数,反求原函数.在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的.一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数.其中:[f(x) + c]' = f(x)一个实变函数在区间[a,b]上的定积分,是一个实数.它等于该函数的一个原函数在b的值减去在a的值.积分 integral 从不同的问题抽象出来的两个数学概念.定积分和不定积分的统称.不定积分是为解决求导和微分的逆运算而提出的.例如:已知定义在区间i上的函数f(x),求一条曲线y=f(x),x∈i,使得它在每一点的切线斜率为f′(x)= f(x).函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作 .如果f(x)是f(x)的一个原函数,则 ,其中c为任意常数.例如, 定积分是以平面图形的面积问题引出的.y=f(x)为定义在[a,b〕上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的面积s,采用古希腊人的穷竭法,先在小范围内以直代曲,求出s的近似值,再取极限得到所求面积s,为此,先将[a,b〕分成n等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi〕,记δxi=xi-xi-1,则pn为s的近似值,当n→+∞时,pn的极限应可作为面积s.把这一类问题的思想方法抽象出来,便得定积分的概念:对于定义在[a,b〕上的函数y=f(x),作分划a=x0<x1<…<xn=b,若存在一个与分划及ζi∈[xi-1,xi〕的取法都无关的常数i,使得,其中则称i为f(x)在[a,b〕上的定积分,表为即 称[a,b〕为积分区间,f(x)为被积函数,a,b分别称为积分的上限和下限.当f(x)的原函数存在时,定积分的计算可转化为求f(x)的不定积分:这是c牛顿莱布尼兹公式微分一元微分定义:设函数y = f(x)在x.的邻域内有定义,x0及x0 + δx在此 20210311