电磁器被认为射器的可行替代方案,美海军的航母电磁弹射器(emals)研究最早可追20世纪40年代。1988年,美国开发出电磁弹射器的小比例模型,该模型长3.66米,宽为实际尺寸的一半,试验表明,其静态推力可达到500千牛以上,弹射直线电机的电磁辐射也能够被控制在槽型结构内。此后,美国就此项研究进行了许多设计研究,硬件演示和技术探讨,但受经费限制,研究的范围和规模有限。20世纪90年代后期,美国在论证未来航母的过程中,正式将电磁弹射系统摆上了议事日程。1999年,美国海军完成了电磁弹射器的概念探讨和定义工作,并发布招标书。2004年4月2日,美国海军空战中心选择了通用原子公司的电磁弹射器方案,确定由该公司领导的团队承担电磁弹射器的研制和验证工作。2008年9月3日,美国航母电磁弹射器完成第一阶段高周试验(hct-1),通过海量重复试验(10000次),验证了电磁弹射器的电气、热力设备的性能以及储能系统的充放电周期率。2009年冬,将开始第二阶段高周试验,包括满功率试验以及环境适应性测试,给出电磁弹射器的性能预报。 电磁弹射器的基本原理和系统组成 电磁弹射器利用直线感应电机的直线运动,带动舰载机加速到起飞速度,其工作原理是:直线感应电机的初级(固定部分)通上交流电后,产生交变磁场,这种磁场在直线感应电机的次级(运动部分)产生感应电流,使次级变为有感应电流的导体,这样,处于交变磁场的次级部分就会受到安培力的作用,向前运动。电磁弹射器的核心构成包括: 弹射直线电机 弹射直线电机是电磁弹射器的核心部分。目前美国采用的是直线感应电机,其主要技术难点有三:一是高峰值功率直线电机的开发。电磁弹射器的峰值功率要求很高,可能达到100兆瓦以上,而目前能实现工程应用的直线电机单机功率仅为几百千瓦。为了降低对直线电机功率的要求,美国的每部电磁弹射器都采用了4台直线电机(单机功率超过30兆瓦),它们的总功率可达到百兆瓦级;二是电磁泄露。需要对电磁弹射器可能产生的全部频段进行模拟,并将飞行甲板上的磁感应强度与各种舰载机设备的敏感度进行对比,防止对舰上设备造成影响;三是散热。用于电磁弹射器的永磁弹射直线电机初级的峰值功率损失可达到13.3兆瓦,铜片的最高温度可达118.2℃,需要利用主动冷却系统对其进行冷却。直线感应电机的功率损失可能会超过永磁直线电机,因此必须考虑如何高效散热。 储能系统 电磁弹射器对电力的需求很大,在弹射较重的舰载机时,整个电磁弹射器的峰值功率可能会达到100兆瓦甚至更高,在目前的条件下,这部分用电无法直接依赖航母电力系统实时供给,必须依靠储能系统将所需的电能事先储存起来,在需要的时候瞬间释放。由于体积和重量等原因,能够满足电磁弹射器储能需要的现成系统无法直接用于航母。目前美国海军的电磁弹射器采用的是飞轮储能(fes)装置。 电力电子变换系统 电力电子变换系统从储能系统获取电能,在长约103米的直线电机上,电力电子变换系统能够在特定时间仅仅接通对弹射起作用的线圈,而不是把整个直线电机的线圈一起接通,从而使整个系统有效运转。它还能通过改变供电的电压,频率,使电磁弹射器在各种速度上都以最高效率运转。电磁弹射器所用的电力电子变换系统由可以高效控制强电能的现成民用电力电子装置组成,可精确控制供给弹射电动机电脉冲的电压和频率。 控制与状态监测系统 电磁弹射系统对控制与状态监测系统的要求很高。在整个弹射过程中,控制与状态监测系统不间断地监视着电磁弹射器全系统的性能。该系统可根据飞机、环境的变化实施调控,使舰载机达到要求的末速度,并担负整个电磁弹射器的报警任务。 电磁弹射器的优势 美国海军之所以为未来航母选择电磁弹射器,主装置、弹射汽缸、活塞、复位机械等构成,尤其是其复杂的管道系统被称为“迷宫”。相比而言,电磁弹射器的构成要简单得多,主要由弹射直线电机、储能系统、电力电子变换系统和控制与状态监测系统四部分组成。另外,电磁弹射器只使用电力,航母的原动机选择灵活;而蒸汽弹射器需要蒸汽源,如果航母不采用蒸汽动力或核动力装置,还需要专门为蒸汽弹射器配备辅助锅炉提供蒸汽,极不经济,且将占据航母大量的空间和重量。 反应快,可靠、易维护、效率高 电磁弹射器利用直线电机进行弹射、制动并使往复车复位,在完全关闭的条件下不到15分钟就能达到待用状态;而蒸汽弹射器需要不断给弹射槽加热,在储汽筒无蒸汽的情况下,达到待用状态需要数小时。 20210311