七年级下册数学全部概念
Wedding Bus 官方
2024-11-05 23:22:13
最佳回答
1.1 数字与字母的乘这样的代数式叫做单。 几个似的和叫做多项式。 一个单项式中,所有字母的指数和叫做这个单向式的次数。 一个多项式中,次数最高的项的次数,叫做这个多项式的次数。 1.3 同敌数幂相乘,底数不变,指数相加。 1.4幂的乘方,底数不变,指数相乘。 积的乘方等于每个因数成方的积。 1.4同底数幂相除,底数不变,指数相减。 任何非0数的0次方,等于1 1.6 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他们的指数不变,作为积的因式。 单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。 多项式与多项式相称,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 1.7 两数和与这两数差的积,等于他们的平方差 1.9 单项式相除,把系数、同底数幂分别相除后,作为上的因式;对于只在被除式里含有的字母,则连同他的直树一起作为上的一个因式。 多项式除以单项式,先把这个多项式的每一项分别除以单项式,,再把所得的商相加。 2.1 补角互为补角的定义 :如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠a +∠c=180°,∠a= 180°-∠c ,∠c的补角=180°-∠c 即:∠a的补角=180°-∠a补角的性质:同角的补角相等。比如:∠a+∠b=180°,∠a+∠c=180°,则:∠c=∠b。等角的补角相等。比如:∠a+∠b=180°,∠d+∠c=180°,∠a=∠d则:∠c=∠b。余角如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角. ∠a +∠c=90°,∠a= 90°-∠c ,∠c的余角=90°-∠c 即:∠a的余角=90°-∠a余角的性质:同角的余角相等。比如:∠a+∠b=90°,∠a+∠c=90°,则:∠c=∠b。等角的余角相等。比如:∠a+∠b=90°,∠d+∠c=90°,∠a=∠d则:∠c=∠b。对顶角相等2.2同位角 定义如图,两个都在截线的同旁,又分别处在另两条直线相同的一侧位置。具有这样位置关系的一对角叫做同位角 内错角的定义两条直线ab和cd被第三条直线ef所截,构成了八个角,如果两个角都在两直线的内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角。同旁内角定义同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角。【平行线的特征】1.两条直线平行,同旁内角互补。2.两条直线平行,内错角相等。3.两条直线平行,同位角相等。【平行线的判定】1.同旁内角互补,两直线平行。2.内错角相等,两直线平行。3.同位角相等,两直线平行。4.如果两条直线同时与第三条直线平行,那么这两条直线互相平行。3.2有效数字一般而言,对一个数据取其可靠位数的全部数字加上第一位可疑数字,就称为这个数据的有效数字。4.1☆可能性★,是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。 必然事件发生的概率为1,记作p(必然事件)=1;不可能事件发生的概率为0,记作p(不可能事件)=0;如果a为不确定事件,那么0<p(a)<1.第五章三角形三条线段首尾顺次连结所组成的封闭图形叫做三角形。三角形的性质1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。2.三角形内角和等于180度 3.等腰三角形的顶角平分线,底边的**,底边的高重合,即三线合一。三角形的三条高交于一点.三角形的三内角平分线交于一点.三角形一内角平分线和另外两顶点处的外角平分线交于一点.等腰三角形 等腰三角形的性质: (1)两底角相等; (2)顶角的角平分线、底边上的**和底边上的高互相重合; (3)等边三角形的各角都相等,并且都等于60°。 .直角三角形(简称rt三角形):(1)直角三角形两个锐角互余; (2)直角三角形斜边上的**等于斜边的一半; (3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半; (4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°; 全等三角形 (1)能够完全重合的两个三角形叫做全等三角形. (2)全等三角形的性质。 全等三角形对应角(边)相等。 全等三角形的对应线段(角平分线、**、高)相等、周长相等、面积相等。 (3)全等三角形的判定 组对应边分别相等的两个三角形全等(简称sss或“边边边”),这一条也说明了三角形具有稳定性的原因。2、有两边及其夹角对应相等的两个三角形全等(sas或“边角边”)。 3、有两角及其夹边对应相等的两个三角形全等(asa或“角边角”)。由3可推到4、有两角及一角的对边对应相等的两个三角形全等(aas或“角角边”)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(hl或“斜边,直角边”)所以,sss,sas,asa,aas,hl均为判定三角形全等的定理。第七章轴对称 如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。 对称轴:折痕所在的这条直线叫做对称轴。 性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线(3)中心对称图形一定是轴对称图形,而轴对称图形不一定是中心对称图形 20210311